SSAS: Semantic Similarity for Abstractive Summarization
نویسندگان
چکیده
Ideally a metric evaluating an abstract system summary should represent the extent to which the system-generated summary approximates the semantic inference conceived by the reader using a humanwritten reference summary. Most of the previous approaches relied upon word or syntactic sub-sequence overlap to evaluate system-generated summaries. Such metrics cannot evaluate the summary at semantic inference level. Through this work we introduce the metric of Semantic Similarity for Abstractive Summarization (SSAS)1, which leverages natural language inference and paraphrasing techniques to frame a novel approach to evaluate system summaries at semantic inference level. SSAS is based upon a weighted composition of quantities representing the level of agreement, contradiction, topical neutrality, paraphrasing, and optionally ROUGE score between a systemgenerated and a human-written summary.
منابع مشابه
Better Summarization Evaluation with Word Embeddings for ROUGE
ROUGE is a widely adopted, automatic evaluation measure for text summarization. While it has been shown to correlate well with human judgements, it is biased towards surface lexical similarities. This makes it unsuitable for the evaluation of abstractive summarization, or summaries with substantial paraphrasing. We study the effectiveness of word embeddings to overcome this disadvantage of ROUG...
متن کاملAbstractive News Summarization based on Event Semantic Link Network
This paper studies the abstractive multi-document summarization for event-oriented news texts through event information extraction and abstract representation. Fine-grained event mentions and semantic relations between them are extracted to build a unified and connected event semantic link network, an abstract representation of source texts. A network reduction algorithm is proposed to summariz...
متن کاملA Semantically Motivated Approach to Compute ROUGE Scores
ROUGE is one of the first and most widely used evaluation metrics for text summarization. However, its assessment merely relies on surface similarities between peer and model summaries. Consequently, ROUGE is unable to fairly evaluate abstractive summaries including lexical variations and paraphrasing. Exploring the effectiveness of lexical resource-based models to address this issue, we adopt ...
متن کاملAutomatic Community Creation for Abstractive Spoken Conversations Summarization
Summarization of spoken conversations is a challenging task, since it requires deep understanding of dialogs. Abstractive summarization techniques rely on linking the summary sentences to sets of original conversation sentences, i.e. communities. Unfortunately, such linking information is rarely available or requires trained annotators. We propose and experiment automatic community creation usi...
متن کاملAbstractive Multi-document Summarization with Semantic Information Extraction
This paper proposes a novel approach to generate abstractive summary for multiple documents by extracting semantic information from texts. The concept of Basic Semantic Unit (BSU) is defined to describe the semantics of an event or action. A semantic link network on BSUs is constructed to capture the semantic information of texts. Summary structure is planned with sentences generated based on t...
متن کامل